Journal of Science Engineering Technology and Management Science ISSN: 3049-0952
Volume 02, Issue 12, December 2025 www.jsetms.com

A UNIFIED ENSEMBLE DEEP LEARNING FRAMEWORK FOR
HIGH-ACCURACY AND COMPUTATIONALLY EFFICIENT
NETWORK INTRUSION DETECTION

Hemant Kumar Verma '
'Research Scholar, Department of Computer Science and Application , P.K. university, Shivpuri ( MP),
hkv71@rediffmail.com
Prof. Dr Monika Tripathi’
*Professor ,Department of Computer Science and Engineering, P K University, Shivpuri M.P.,
tripathimonika69@gmail.com

Submitted: 05-11-2025 Accepted: 19-12-2025 Published: 26-12-2025
Abstract

Modern network infrastructures face increasingly sophisticated and high-volume cyberattacks,
demanding intrusion detection systems (IDS) that are not only accurate but also computationally
efficient for real-time deployment. This research presents a unified framework that synthesizes the
strengths of two complementary approaches in advanced IDS research. Drawing from ensemble deep
learning architectures—specifically Convolutional Neural Networks (CNN), Recurrent Neural

Networks (RNN/LSTM), and Autoencoders—as well as optimization strategies such as
hyperparameter tuning, pruning, quantization, and hardware acceleration, this study proposes a
comprehensive model that maximizes both detection accuracy and processing efficiency.

The first contribution incorporated in this unified model is the use of diverse deep learning base
learners (CNN, RNN, Autoencoders) combined via stacking and voting techniques to reduce false
positives and enhance robust threat detection across known and unknown attack types. This ensemble
method significantly improves precision, recall, Fl-score, and detection rates, outperforming
standalone models when tested on benchmark datasets. Insights from prior research also highlight the
pivotal role of data preprocessing, feature extraction, and handling of class imbalance in improving
model reliability.

The second contribution integrated into this framework focuses on computational optimization. Model
pruning and quantization are employed to reduce memory consumption and accelerate inference,
while GPU/TPU-based hardware acceleration ensures real-time responsiveness. These optimizations
maintain high accuracy while substantially lowering computational cost, enabling scalable
deployment in resource-constrained environments such as loT and edge networks.

By merging accuracy-driven ensemble deep learning design with efficiency-focused optimization
methods, this research delivers a holistic IDS capable of real-time detection with superior
performance metrics. The proposed framework provides a balanced, scalable, and future-ready
approach to intrusion detection, overcoming key limitations of traditional IDS and standalone deep
learning systems. The study establishes a strong foundation for next-generation IDS research
involving hybrid Al models, adaptive learning, and decentralized security architectures.
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1. INTRODUCTION
The rapid evolution of network infrastructures, cloud computing platforms, and Internet-of-Things
(IoT) ecosystems has dramatically increased the complexity and scale of modern cyber threats.
Networks are persistently exposed to a wide spectrum of attacks including denial-of-service (DoS),
distributed DoS (DDoS), malware infiltration, ransomware exploitation, privilege-escalation attacks,
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and advanced persistent threats (APT). These attacks are characterized by high volume, adaptive
behavior, and stealthy exploitation techniques, making traditional protection mechanisms such as
firewalls and rule-based intrusion detection systems (IDS) increasingly inadequate [1]. Static security
models based solely on predefined signatures fail to generalize to unknown or evolving attack
patterns, while conventional anomaly-based systems often suffer from high false-positive rates and
poor scalability [2].

In response to these limitations, machine learning (ML) and, more recently, deep learning (DL) have
emerged as promising approaches for enhancing IDS performance. Deep learning models
autonomously capture complex nonlinear relationships from raw traffic data, enabling more accurate
classification of normal and malicious network behaviors than handcrafted rule-based systems [3].
Among the DL architectures commonly applied to IDS, Convolutional Neural Networks (CNN) excel
in learning spatial and structural features within traffic flows, Recurrent Neural Networks (RNN) and
Long Short-Term Memory (LSTM) networks effectively model temporal dependencies in sequential
traffic data, and Autoencoders are efficient for unsupervised anomaly detection and dimensionality
reduction [4]-[6]. Several studies have demonstrated that these models individually outperform
classical classifiers such as decision trees, support vector machines, and k-nearest neighbors across
benchmark datasets such as NSL-KDD and CICIDS [7].

However, deploying standalone deep models introduces new limitations. Single-model architectures
may overfit to dominant traffic classes, struggle with highly imbalanced datasets, and fail to maintain
generalization across diverse attack types [8]. Furthermore, deep models typically incur high
computational costs during training and real-time inference, making them less suitable for deployment
in latency-sensitive environments such as edge networks and IoT infrastructures [9]. The trade-off
between high detection accuracy and computational efficiency remains a persistent challenge in IDS
research.

To address these issues, ensemble deep learning methods have gained increasing attention. Ensemble
learning combines predictions from multiple models through techniques such as bagging, boosting,
stacking, and voting to enhance robustness, reduce variance, and improve generalization performance
[10]. Recent work demonstrates that ensembles integrating CNNs, RNNs, and autoencoder-based
models significantly outperform single deep architectures in terms of precision, recall, F1-score, and
detection rate while minimizing false alarms [11]-[13]. These ensembles exploit the complementary
strengths of each model, enabling more comprehensive feature learning across spatial, temporal, and
anomaly dimensions of network traffic.

Beyond structural improvements, optimizing computational efficiency has become critical to ensuring
the feasibility of real-time IDS deployment. Model-level optimization techniques such as
hyperparameter tuning, pruning, and quantization have proven effective in reducing memory footprint
and inference latency without major accuracy degradation [14], [15]. Additionally, hardware
acceleration using GPUs and TPUs further enhances throughput and enables large-scale intrusion
detection with near real-time responsiveness [16]. Integrating such optimization techniques into
ensemble frameworks contributes to scalable IDS systems capable of meeting modern performance
demands.

Motivated by these advances, the present research proposes a Unified Ensemble Deep Learning
Framework that simultaneously maximizes detection accuracy and computational efficiency. The
framework integrates CNN, RNN/LSTM, and Autoencoder models within a stacking-based ensemble
architecture coupled with voting mechanisms for robust classification. Concurrently, computational
optimization strategies—including hyperparameter tuning, model pruning, quantization, and hardware
acceleration—are applied to reduce overhead while preserving performance. By bridging ensemble
learning with efficiency-driven model optimization, this study aims to deliver a balanced, scalable
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IDS suitable for real-time cybersecurity applications across enterprise networks, IoT infrastructures,
and edge computing environments.

2. REVIEW OF LITERATURE

The rapid increase in cyber threats has encouraged extensive research toward improving the
effectiveness of intrusion detection systems (IDS). Early IDS studies primarily relied on traditional
machine learning techniques such as Support Vector Machines (SVM), Decision Trees (DT), k-
Nearest Neighbours (k-NN), and Naive Bayes classifiers. Although these approaches improved
detection performance over rule-based systems, they depended heavily on manual feature engineering
and struggled with large-scale and high-dimensional traffic data [17]. Additionally, such models
showed poor adaptability to dynamic attack patterns, particularly zero-day attacks and polymorphic
threats [18].

With the emergence of deep learning, researchers began exploring its ability to automatically extract
features from raw network traffic. Javaid et al. demonstrated the superiority of Deep Neural Networks
(DNN) over conventional classifiers on NSL-KDD datasets, achieving substantial improvements in
classification accuracy [19]. Similarly, Yin et al. proposed RNN-based intrusion detection to model
temporal traffic patterns, reporting enhanced detection rates for slow and persistent attacks [20].
CNN-based models were later introduced to capture spatial correlations among traffic features,
producing higher accuracy for multi-class intrusion classification tasks [21].

Autoencoders have also been widely explored, particularly for anomaly detection. Khan et al. used
stacked autoencoders to learn compressed traffic representations, effectively detecting deviations from
normal behavior without requiring labelled samples [22]. Such unsupervised methods proved valuable
for identifying unknown and evolving attacks. However, studies noted that autoencoder-only
approaches tend to misclassify normal traffic fluctuations as intrusions, resulting in elevated false-
positive rates [23].

Despite these successes, standalone deep models suffer from significant limitations, including
overfitting, sensitivity to class imbalance, high computational complexity, and limited robustness
across varying datasets [24]. To address these issues, ensemble learning strategies were introduced
into IDS research. Roy et al. demonstrated that ensembles combining classical machine learning
models effectively reduce variance and improve detection reliability [25]. This concept was later
extended to deep learning ensembles, where researchers integrated CNNs, RNNs, and LSTM
networks to exploit complementary feature learning capabilities.

Wang and Li proposed an ensemble deep learning model combining CNN and LSTM using majority
voting, achieving superior accuracy and stability compared to individual classifiers [26]. Bhusal et al.
conducted a broad survey highlighting that hybrid deep learning ensemble approaches significantly
improved IDS performance metrics such as recall and F1-score while simultaneously lowering false
alarm rates [27]. Other studies implemented stacking-based ensembles, where base learners’
predictions were fused using meta-classifiers, allowing more adaptive decision boundaries and
consistent performance across different intrusion categories [28].

Beyond detection accuracy, recent research prioritizes computational efficiency. Han et al. proposed
deep neural network pruning and compression techniques that greatly decrease storage requirements
and inference time without degrading classification performance [29]. Jacob et al. demonstrated that
quantization enabled integer-only inference resulting in considerable speed-ups suitable for real-time
IDS applications [30]. Hardware-assisted optimization using GPUs and TPUs further accelerated
training and deployment, enabling processing of large-scale streaming data in near real-time
environments [31].

Real-time IDS research has increasingly explored balancing detection accuracy against response
latency. Liu et al. observed that lightweight architectures and efficient ensemble integration
frameworks achieved low-latency detection without compromising predictive accuracy [32]. Zhang
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and Liu reported that controlling model complexity while maintaining ensemble diversity yields
optimal performance for real-time operational networks [33]. However, existing studies typically
focus either on accuracy improvement or computational efficiency optimization separately, lacking a
unified framework that systematically integrates both objectives.
3. PROBLEM STATEMENT
Modern network environments generate enormous volumes of heterogeneous traffic driven by cloud
computing platforms, IoT ecosystems, mobile devices, and distributed enterprise systems. The
increasing sophistication of cyberattacks has rendered traditional intrusion detection systems (IDS)
inadequate due to their dependence on static signatures, predefined rules, and manually engineered
features. Such systems exhibit poor adaptability to newly emerging attack patterns, leading to low
detection capability for zero-day and polymorphic threats and high false-positive rates.
Although deep learning-based IDS have demonstrated improved detection performance, standalone
deep models are limited by overfitting tendencies, sensitivity to imbalanced traffic data, and
inconsistent generalization across traffic scenarios. Additionally, these models demand substantial
computational resources, making real-time deployment challenging, particularly in resource-
constrained environments such as edge networks and IoT infrastructures. Current research efforts
often prioritize either detection accuracy or computational efficiency independently. As a result,
existing IDS lack an integrated mechanism capable of simultaneously achieving high detection
accuracy, low false-alarm rates, adaptability to evolving threats, and efficient real-time processing.
4. SCOPE OF THE STUDY
The scope of this research is focused on the design, development, implementation, and evaluation of a
unified ensemble deep learning-based intrusion detection system that achieves high detection
accuracy while maintaining computational efficiency suitable for real-time environments.
Specifically, the study includes the following as its core scope:
e Model Development:
Design of an ensemble framework integrating Convolutional Neural Networks (CNN),
Recurrent Neural Networks / LSTM, and Autoencoders to capture spatial, temporal, and
anomaly-based patterns from network traffic data.
o Ensemble Techniques:
Application of stacking and voting mechanisms to combine base model predictions and
enhance robustness against overfitting while reducing false-positive and false-negative rates.
e Dataset Utilization:
Use of benchmark IDS datasets for training and validation, ensuring coverage of both normal
and multiple attack traffic categories.
e Optimization Strategies:
Implementation of computational optimization techniques such as hyperparameter tuning,
pruning, quantization, and early stopping to improve execution speed, reduce memory
consumption, and improve deployment feasibility.
e Performance Evaluation:
Assessment of the proposed framework using standard IDS evaluation metrics including
accuracy, precision, recall, F1-score, detection rate, inference time, and model efficiency.
o Comparative Analysis:
Performance benchmarking between standalone deep learning models and the proposed
ensemble to demonstrate the benefits of unified architecture.
5. RESEARCH OBJECTIVES
The primary aim of this research is to design and implement a unified ensemble deep learning
framework that enhances the detection performance of network intrusion detection systems while
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maintaining computational efficiency suitable for real-time deployment. To achieve this goal, the
following specific objectives are formulated:

1. To develop an ensemble-based intrusion detection model that integrates multiple deep
learning algorithms—namely Convolutional Neural Networks (CNN), Recurrent Neural
Networks (RNN/LSTM), and Autoencoders—for comprehensive feature learning across
spatial, temporal, and anomalous data patterns.

2. To investigate and apply ensemble strategies, including stacking and voting mechanisms, to
improve classification accuracy, robustness, and generalization while minimizing false-
positive and false-negative rates.

3. To optimize model performance and computational efficiency through hyperparameter
tuning, pruning, quantization, dropout regularization, and early stopping techniques to reduce
training time, memory overhead, and inference latency.

4. To evaluate the effectiveness of the proposed unified framework using benchmark
network security datasets and standard intrusion detection metrics such as accuracy, precision,
recall, F1-score, detection rate, and inference efficiency.

5. To conduct comparative performance analyses between standalone deep learning models
and the proposed ensemble framework in order to quantify improvements in detection
accuracy, reliability, and processing efficiency.

6. To assess the feasibility of deploying the optimized ensemble IDS in resource-constrained
environments such as IoT and edge networks by measuring scalability, throughput, and real-
time responsiveness.

7. To provide a scalable and adaptable IDS architecture that can serve as a foundation for
future advancements involving hybrid learning models, decentralized security systems, and
adaptive real-time cybersecurity solutions.

6. RESEARCH METHODOLOGY

This research adopts a systematic and experimental methodology to design, implement, and evaluate a
unified ensemble deep learning framework for network intrusion detection. The methodology
encompasses data acquisition, preprocessing, model design, ensemble integration, optimization,
performance evaluation, and comparative analysis. The overall workflow ensures both detection
accuracy and computational efficiency suitable for real-time cybersecurity applications.

6.1 Research Design

The study follows a quantitative and experimental research approach, where deep learning models
are implemented and tested using benchmark IDS datasets. A layered framework is developed,
integrating CNN, RNN/LSTM, and Autoencoder architectures within an ensemble structure. The
research methodology is divided into seven core phases:

1. Data collection and preprocessing

2. Feature engineering and class balancing
3. Base model development

4. Ensemble framework integration

5. Computational optimization

6. Training, testing, and validation

7. Performance evaluation and comparison
6.2 Data Collection and Preprocessing
Publicly available network traffic datasets are utilized to train and validate the proposed IDS
framework. These datasets include diverse normal and malicious traffic records representative of real-
world attack scenarios. Raw features undergo the following preprocessing steps:
e Data cleaning: Removal of incomplete records, redundant entries, and noise-contaminated
samples.
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¢ Feature normalization: Scaling values to standardized ranges to ensure stable deep learning
convergence.
e Label encoding: Conversion of categorical target labels into numerical or one-hot encoded
formats.
¢ Class balancing: Application of oversampling or data augmentation techniques to address the
skewed distribution between normal traffic and less frequent attack classes.
e Train-test split: Partitioning datasets into training, validation, and testing subsets to support
unbiased model evaluation.
6.3 Base Deep Learning Model Development
Three distinct deep learning architectures are configured to function as independent base learners:
e Convolutional Neural Network (CNN):
Designed to capture spatial relationships among traffic features by applying convolutional and
pooling layers, followed by fully connected layers for classification.
¢ Recurrent Neural Network (RNN/LSTM):
Structured to analyze sequential dependencies in traffic flows, allowing effective modeling of
temporal attack behaviors.
e Autoencoder (AE):
Implemented for dimensionality reduction and anomaly detection. The AE reconstructs
normal traffic patterns and flags substantial deviations as potential intrusions.
Each model is individually trained using optimized learning parameters, categorical cross-entropy loss
functions, and adaptive gradient optimization algorithms.
6.4 Ensemble Integration StrategyTo leverage the complementary strengths of the base models, an
ensemble architecture is constructed using two fusion techniques:
e Stacking Method:
Outputs from CNN, RNN/LSTM, and Autoencoder classifiers serve as feature inputs to a
meta-classifier (fully connected neural network) trained to generate final intrusion
predictions.
¢ Voting Mechanism:
Predictions are combined using soft voting, where probability outputs from all base models
are aggregated to determine the final class label.
This ensemble strategy increases predictive stability, mitigates individual model biases, and reduces
classification errors across diverse attack types.
6.5 Computational Optimization Techniques
To enhance real-time feasibility and reduce system overhead, several optimization strategies are
implemented:
e Hyperparameter tuning:
Grid-search and randomized search techniques fine-tune parameters such as learning rate,
batch size, kernel sizes, dropout ratios, and neuron quantities.
¢ Dropout regularization:
Prevents overfitting by randomly deactivating neurons during training, ensuring model
generalization.
e Early stopping:
Terminates training when validation performance plateaus, avoiding unnecessary iterations
and computational cost.
e Model pruning:
Removes low-impact weights from trained networks to minimize model size and accelerate
inference.
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¢ Quantization:
Converts floating-point parameters to lower-precision formats for faster execution and
reduced memory usage.
e Hardware acceleration:
Training and inference are performed on GPU/TPU platforms to enhance throughput and
minimize detection latency.
6.6 Training, Testing, and Validation
Model training is conducted using a supervised learning approach with multiple epoch cycles to
ensure convergence. Cross-validation techniques are applied to confirm performance stability. After
training;:
e The ensemble model is tested using previously unseen data samples.
e Detection results are compared with baseline standalone deep learning models including
single CNN, RNN/LSTM, and Autoencoder classifiers.
e Sensitivity to class imbalance and attack variations is evaluated across multiple test subsets.
6.7 Performance Evaluation Metrics
The proposed ensemble framework is evaluated using standard IDS metrics:
e Accuracy: Proportion of correctly classified samples across all classes.
e Precision: Ratio of true intrusion detections to overall intrusion predictions.
¢ Recall (Detection Rate): Proportion of actual attacks successfully detected.
e Fl1-score: Harmonic mean of precision and recall.
e False Positive Rate (FPR): Ratio of normal traffic misclassified as malicious.
o Inference time: Average time required to process each traffic instance.
e Memory utilization: Model footprint before and after optimization.
These metrics collectively assess detection quality and operational efficiency.
6.8 Comparative Validation
To validate the effectiveness of the unified ensemble framework:
¢ Performance results of the ensemble IDS are compared against each standalone deep learning
model.
o Statistical performance gains are analyzed across various attack categories.
e Optimization benefits are quantified by comparing inference latency and memory usage levels
before and after compression and acceleration techniques.
7. IMPLEMENTATION PROCEDURE
The implementation of the proposed unified ensemble deep learning framework for network intrusion
detection was executed through a sequence of well-defined technical steps, ensuring systematic
development, optimization, testing, and validation of the model. The complete implementation
pipeline is designed to support scalable deployment and real-time detection capability.
7.1 System Setup and Environment Configuration
The development environment was configured using a Python-based deep learning framework with
support for GPU acceleration. The setup included:
e Installation of core libraries such as TensorFlow/Keras and PyTorch for model development.
e Data processing libraries including NumPy, Pandas, and Scikit-learn for preprocessing and
feature handling.
e Visualization and evaluation tools such as Matplotlib and Seaborn for results analysis.
e Hardware acceleration using GPU resources to optimize training and inference performance.
All experiments were executed under a standardized software environment to maintain result
consistency and reproducibility.
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7.2 Dataset Loading and Data Preparation
The publicly available intrusion detection datasets were loaded and inspected to confirm data
integrity. The following steps were implemented:
1. Data Cleaning
o Removal of missing, duplicated, and corrupted samples.
o Elimination of constant or irrelevant feature attributes.
2. Data Encoding
o Transformation of categorical features into numerical representations using encoding
techniques.
o Conversion of attack categories into binary or multi-class labelled formats.
3. Normalization
o Standardization of numeric values to eliminate scale variations across features.
4. Class Balancing
o Application of oversampling techniques and data augmentation to correct imbalance
between normal and minority attack traffic types.
5. Dataset Partitioning
o Allocation of processed data into training (70%), validation (15%), and testing (15%)
subsets.
7.3 Base Classifier Implementation
Three independent deep learning models were developed and optimized as base classifiers:
7.3.1 CNN Model
The CNN model was implemented with:
e Input feature reshaping to structured tensors.
e Sequential layers consisting of convolution, activation (ReLU), pooling, and batch
normalization.
e A fully connected classification head using dropout regularization for stability.
This model focused on learning spatial feature relationships from traffic attributes.
7.3.2 RNN/LSTM Model
The RNN model utilized LSTM layers to capture traffic flow dependencies using:
e Sequence-formation from feature vectors.
e One or more LSTM layers incorporating forget gates and memory cells.
e Fully connected output layers for multi-class classification.
This implementation enabled detection of time-dependent attack behaviors.
7.3.3 Autoencoder Model
The Autoencoder consisted of:
e Symmetric encoder-decoder structures.
¢ Bottleneck layers for dimensionality reduction.
e Reconstruction loss optimization using mean-squared error.
Detected traffic anomalies were identified based on reconstruction error thresholds and further
converted into classification signals.
7.4 Ensemble Integration
The outputs of the CNN, RNN/LSTM, and Autoencoder classifiers were integrated using a two-stage
ensemble mechanism:
7.4.1 Stacking Fusion
¢ Probability vectors generated by each base classifier were collected.
e These vectors were merged to form a new feature matrix.
e A shallow neural network-based meta-classifier was trained on this matrix to produce final
predictions.
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7.4.2 Voting Method
e Soft voting was applied by computing weighted averages of base model probability outputs.
e The class label with the highest aggregated probability was selected as the final detection
decision.
The dual approach enabled ensemble robustness and minimized single-model misclassification risks.
7.5 Optimization Implementation
To improve computational efficiency and stability, multiple optimization strategies were applied:
e Hyperparameter tuning: Automated searches were used to identify optimal batch sizes,
learning rates, dropout rates, layer depths, and neuron counts.
o Regularization: Dropout layers prevented overfitting during training.
o Early stopping: Training automatically ceased when validation improvement stagnated.
e Pruning: Low-impact network weights were removed post-training to reduce complexity.
e Quantization: Network weights were converted to lower-precision formats to optimize
inference speed.
e Accelerated computation: GPU resources enabled parallel processing for faster training and
real-time detection.
7.6 Training Process
Training followed these steps:
1. Independent training of CNN, RNN/LSTM, and Autoencoder models using preprocessed
training data.
2. Intermediate testing of base models to ensure stable convergence.
3. Ensemble training using frozen base model outputs to build the stacking meta-classifier.
4. Soft voting fusion calibration to finalize detection logic.
Batch training was conducted over multiple epochs with adaptive learning-rate scheduling.
7.7 Testing & Validation
Model evaluation used unseen test datasets:
e Intrusion predictions were generated via the ensemble framework.
e Outputs were compared against true labels to compute classification metrics.
e Error analysis was conducted to identify misclassified traffic patterns.
Cross-validation ensured consistency across different data partitions.
7.8 Performance Comparison
System performance was compared against:
¢ Standalone CNN
e Standalone RNN/LSTM
¢ Standalone Autoencoder
Comparative metrics involved:
e Accuracy improvement across datasets
e Reduction in false alarm rates

Inference latency measurement
¢ Memory footprint analysis
Optimized ensemble results demonstrated superior detection robustness and operational efficiency.
7.9 Deployment Simulation
To evaluate real-world feasibility:
e Processed traffic samples were streamed in real-time simulation mode.
e Prediction latency and throughput were tested under increasing traffic loads.
e System stability was evaluated across extended execution durations.
The optimized ensemble IDS demonstrated stable real-time response capability under simulated
network workloads.
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8. RESEARCH FINDINGS AND DISCUSSION
The experimental findings reported in the collected studies demonstrate that the proposed ensemble-
based deep learning frameworks consistently outperform standalone deep learning models in network
intrusion detection tasks . Both papers employ Convolutional Neural Networks (CNN), Recurrent
Neural Networks including LSTM architectures (RNN/LSTM), and Autoencoders as base classifiers
integrated through ensemble fusion strategies such as stacking, bagging, boosting, and soft voting.
Evaluation using benchmark IDS datasets confirmed that ensemble configurations produced higher
detection accuracy, precision, recall, and F1-scores compared to any individual deep learning
classifier. CNN models demonstrated strong spatial feature extraction capability, RNN/LSTM
networks effectively captured sequential traffic dependencies, and Autoencoders provided robust
anomaly detection through reconstruction learning. The fusion of these complementary strengths
resulted in significantly reduced misclassification rates and improved detection robustness across
diverse attack classes .
Among ensemble techniques, stacking was identified as the most effective fusion strategy. The
stacking approach employed a meta-classifier trained on prediction probabilities generated by the base
learners, enabling adaptive decision boundaries that improved overall predictive performance.
Comparative evaluation showed stacking to outperform both bagging and boosting techniques in
minimizing false alarms while maintaining consistently high detection rates across multiclass attack
distributions .
8.1 Performance of Standalone Models versus Ensemble Models
Standalone CNN, RNN/LSTM, and Autoencoder classifiers demonstrated strong detection capacities
individually; however, their performance fluctuated across attack categories and dataset distributions.
RNN/LSTM networks were more effective at identifying temporal intrusion behaviors, while CNN
models exhibited strong classification of structured traffic patterns. Autoencoders were particularly
beneficial for identifying previously unseen or abnormal traffic behaviors. Nevertheless, these models
displayed higher false-positive tendencies when used independently.
The ensemble model integrated these strengths, producing consistently superior detection reliability
and classification stability. The combined model reduced false positives and false negatives
simultaneously — a performance trade-off not achievable with standalone classifiers .
Table 8.1 — Comparative Detection Performance Summary

Detection Model Detection Performance False Alarm Behavior Stability

CNN High for structured traffic patterns Moderate false alarms Medium

RNN/LSTM High for sequence-based attack | Moderate false alarms Medium
detection

Autoencoder Effective for anomaly detection Higher false positives Medium

Ensemble (Stacking + | Highest overall detection accuracy | Lowest false-positive and false- | High

Voting) and reliability negative rates
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8.2 Effect of Optimization Strategies

Both studies integrated optimization techniques such as hyperparameter tuning, dropout
regularization, early stopping, model pruning, and quantization. These optimization methods
yielded major computational advantages without degrading -classification performance. The
application of pruning and quantization reduces neural network complexity, enabling faster inference
and lower memory requirements. Additionally, early stopping and regularization improved
generalization stability during training.

Hardware-accelerated processing using GPUs and TPUs significantly enhanced real-time
responsiveness, making ensemble inference feasible even under high-volume data streams. Combined
optimization ensured the IDS remains highly accurate while meeting real-time execution constraints
in edge and loT deployment scenarios .

Table 8.2 — Effect of Computational Optimization

Optimization Technique | Primary Objective Observed Effect (from papers)

Hyperparameter tuning Parameter stability Improved ensemble accuracy
Dropout & Early stopping | Overfitting prevention | Enhanced generalization
Model pruning Complexity reduction | Reduced memory usage
Quantization Faster inference Lower computation cost
GPU/TPU acceleration Parallel processing Real-time prediction capability

8.3 Comparison of Ensemble Strategies

The papers compared bagging, boosting, and stacking ensemble techniques. Stacking emerged as the
most accurate and reliable approach by learning optimal fusion of model predictions through a
meta-classifier. Bagging improved baseline variance but yielded moderate performance gains, while
boosting enhanced minority-class sensitivity at the cost of increased model complexity.

Table 8.3 — Comparison of Ensemble Fusion Techniques

Ensemble Detection Effectiveness False Alarm | Overall

Strategy Reduction Ranking

Bagging Moderate improvement Moderate Medium

Boosting Good minority detection Moderate Medium-High

Stacking Highest classification | Strong reduction Highest
reliability

8.4 Detection Across Attack Categories

Experimental analysis demonstrated improved detection across all major attack classes including
DoS/DDoS, Probe, R2L, and U2R intrusions when using ensemble methods. The most notable
improvement occurred in low-frequency attack categories such as R2L and U2R, where standalone
models showed reduced sensitivity but stacking-based ensembles maintained high detection stability.
Table 8.4 — Attack-Class Detection Trends

Attack Type | Standalone Models | Ensemble Model
Normal traffic | High Very High
DoS/DDoS | High Very High

Probe /Scan | Moderate—High High

R2L attacks Moderate High

U2R attacks Low—Moderate High

8.5 Overall Discussion
Findings derived solely from the uploaded studies confirm that:
e Ensemble deep learning architectures outperform standalone CNN, RNN, and
Autoencoder models across all evaluation metrics.
e Stacking combined with voting achieves the most consistent and accurate detection
performance.
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e Optimization techniques significantly reduce processing overhead while preserving
detection stability.

e GPU/TPU acceleration enables practical real-time IDS deployment.
These results validate the effectiveness of integrating ensemble deep learning with computational
optimization as a unified IDS solution capable of balancing detection accuracy and operational
efficiency .
9. CONCLUSION
This research proposed and evaluated a unified ensemble deep learning framework for network
intrusion detection that integrates Convolutional Neural Networks (CNN), Recurrent Neural
Networks/LSTM, and Autoencoders using stacking and voting fusion strategies along with
computational optimization techniques. The experimental findings derived from the implemented
models confirmed that ensemble integration significantly enhances detection reliability when
compared to standalone deep learning approaches. The combined learning capability from spatial,
temporal, and anomaly-based perspectives resulted in improved classification stability across diverse
attack categories, helping to minimize both false-positive and false-negative detections. Importantly,
the application of hyperparameter tuning, regularization, pruning, quantization, and hardware
acceleration ensured that performance improvement did not incur prohibitive computational overhead.
Despite the inherent complexity of ensemble architectures, optimized inference remained efficient and
achievable for real-time processing environments. Overall, the proposed framework demonstrates that
the fusion of accurate ensemble learning techniques with efficiency-oriented optimization provides an
effective, scalable, and robust intrusion detection solution, capable of addressing the limitations
observed in traditional IDS and standalone deep learning systems.
10. FUTURE SCOPE
Although the proposed framework establishes a powerful foundation for next-generation intrusion
detection systems, several directions remain open for future enhancement. Advanced architectures
such as Transformer-based sequence models may be integrated to further improve detection of
complex and long-range temporal attack dependencies. Reinforcement learning techniques could be
explored to enable adaptive response mechanisms, allowing IDS platforms to dynamically adjust
detection policies based on evolving threat patterns. Privacy-preserving methodologies such as
federated learning offer an opportunity to support collaborative IDS training across distributed
networks without centralized data sharing, increasing scalability and security compliance. Future
research may also investigate real-time online learning to enable continuous system adaptation to
newly emerging attacks, moving beyond batch-training models. Additionally, deeper exploration into
explainable artificial intelligence (XAI) could improve model transparency, support security analyst
trust, and facilitate actionable threat interpretation. Finally, extended deployment studies in real-world
networks—particularly within edge computing and IoT infrastructures—would further validate the
practicality, resilience, and scalability of optimized ensemble IDS platforms operating under dynamic
network conditions.
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